relative velocity

So, I complained about MythBuster's explanation of relative velocity. How would I explain this? I would start by saying that velocity is relative. Here is the definition for velocity: I put the "avg" in there because it is more true. If the acceleration is zero, I could drop this. For the rest of this post, I am going to assume zero acceleration. Ok. But what is the r vector? It is simply a vector from the origin to the object. Here is a picture. Simple, right? And so the velocity tells how this vector r changes. But wait. Who says that I used the correct origin? How do you…
In the last episode of MythBusters, they tried to reproduce the following experiment. Suppose you are driving in a car at 60 mph and you shoot a ball backwards at 60 mph (with respect to the car). Will the ball just drop (with respect to the ground)? Actually, it is a cool demo - I saw some Japanese show did this a while ago. So, what is the problem? The problem is with the MythBusters' use of their terms to explain this thing. Let me look at a couple of the things they said to explain this (surprisingly, they described it several different ways). This first one is my favorite. Bad…
It has been windy here lately. Sometimes I think that is an ok thing. You see, when I ride my bike to work I am probably going to have the wind at my back for one of directions. It is great feeling like Lance Armstrong because of the boost you get from the wind. With a good wind at my back, I can almost keep up with the traffic (I would keep up if they went the 25 mph speed limit). Of course, with a great boost comes a great drag. When I ride into the wind, I feel weak. I pedal as fast as I can and cars just whiz right by like I am standing still. When you are in a car, you don't…
**pre reqs:** [Vectors and Vector Addition](http://scienceblogs.com/dotphysics/2008/09/basics-vectors-and-vector-ad…) This was sent in as a request. I try to please, so here it is. The topic is something that comes up in introductory physics - although I am not sure why. There are many more important things to worry about. Let me start with an example. Suppose you are on a train that is moving 10 m/s to the right and you throw a ball at 5 m/s to the right. How fast would someone on the ground see this ball? You can likely come up with an answer of 15 m/s - that wasn't so hard right?…