New and Exciting in PLoS ONE

There are 27 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

Altruism in Forest Chimpanzees: The Case of Adoption:

In recent years, extended altruism towards unrelated group members has been proposed to be a unique characteristic of human societies. Support for this proposal seemingly came from experimental studies on captive chimpanzees that showed that individuals were limited in the ways they shared or cooperated with others. This dichotomy between humans and chimpanzees was proposed to indicate an important difference between the two species, and one study concluded that "chimpanzees are indifferent to the welfare of unrelated group members". In strong contrast with these captive studies, consistent observations of potentially altruistic behaviors in different populations of wild chimpanzees have been reported in such different domains as food sharing, regular use of coalitions, cooperative hunting and border patrolling. This begs the question of what socio-ecological factors favor the evolution of altruism. Here we report 18 cases of adoption, a highly costly behavior, of orphaned youngsters by group members in Taï forest chimpanzees. Half of the adoptions were done by males and remarkably only one of these proved to be the father. Such adoptions by adults can last for years and thus imply extensive care towards the orphans. These observations reveal that, under the appropriate socio-ecologic conditions, chimpanzees do care for the welfare of other unrelated group members and that altruism is more extensive in wild populations than was suggested by captive studies.

Ecoregion Prioritization Suggests an Armoury Not a Silver Bullet for Conservation Planning:

In the face of accelerating species extinctions, map-based prioritization systems are increasingly useful to decide where to pursue conservation action most effectively. However, a number of seemingly inconsistent schemes have emerged, mostly focussing on endemism. Here we use global vertebrate distributions in terrestrial ecoregions to evaluate how continuous and categorical ranking schemes target and accumulate endangered taxa within the IUCN Red List, Alliance for Zero Extinction (AZE), and EDGE of Existence programme. We employed total, endemic and threatened species richness and an estimator for richness-adjusted endemism as metrics in continuous prioritization, and WWF's Global200 and Conservation International's (CI) Hotspots in categorical prioritization. Our results demonstrate that all metrics target endangerment more efficiently than by chance, but each selects unique sets of top-ranking ecoregions, which overlap only partially, and include different sets of threatened species. Using the top 100 ecoregions as defined by continuous prioritization metrics, we develop an inclusive map for global vertebrate conservation that incorporates important areas for endemism, richness, and threat. Finally, we assess human footprint and protection levels within these areas to reveal that endemism sites are more impacted but have more protection, in contrast to high richness and threat ones. Given such contrasts, major efforts to protect global biodiversity must involve complementary conservation approaches in areas of unique species as well as those with highest diversity and threat.

Human Ovarian Reserve from Conception to the Menopause:

The human ovary contains a fixed number of non-growing follicles (NGFs) established before birth that decline with increasing age culminating in the menopause at 50-51 years. The objective of this study is to model the age-related population of NGFs in the human ovary from conception to menopause. Data were taken from eight separate quantitative histological studies (n = 325) in which NGF populations at known ages from seven weeks post conception to 51 years (median 32 years) were calculated. The data set was fitted to 20 peak function models, with the results ranked by obtained correlation coefficient. The highest ranked model was chosen. Our model matches the log-adjusted NGF population from conception to menopause to a five-parameter asymmetric double Gaussian cumulative (ADC) curve ( = 0.81). When restricted to ages up to 25 years, the ADC curve has = 0.95. We estimate that for 95% of women by the age of 30 years only 12% of their maximum pre-birth NGF population is present and by the age of 40 years only 3% remains. Furthermore, we found that the rate of NGF recruitment towards maturation for most women increases from birth until approximately age 14 years then decreases towards the menopause. To our knowledge, this is the first model of ovarian reserve from conception to menopause. This model allows us to estimate the number of NGFs present in the ovary at any given age, suggests that 81% of the variance in NGF populations is due to age alone, and shows for the first time, to our knowledge, that the rate of NGF recruitment increases from birth to age 14 years then declines with age until menopause. An increased understanding of the dynamics of human ovarian reserve will provide a more scientific basis for fertility counselling for both healthy women and those who have survived gonadotoxic cancer treatments.

A Computer Simulation of Progesterone and Cox2 Inhibitor Treatment for Preterm Labor:

Sufficient information from in vitro and in vivo studies has become available to permit computer modeling of the processes that occur in the myometrium during labor. This development allows the in silico investigation of pathological mechanisms and the trialing of potential treatments. Based on the human literature, we developed a computer model of the immune-endocrine environment of the myometrial cell. The interactions between molecules are represented by differential equations. The model is designed to simulate the estrogen and progesterone receptor changes during pregnancy and particularly the changes in the progesterone receptor (PR) isoforms A and B that are thought to mediate functional progesterone withdrawal in the human at labor. Parturition is represented by an increase in the PRA to PRB ratio to levels seen in women in labor. Infection is shown by inducing inflammation in the system by increasing phospho-IkB kinase concentration (IKK) levels; which lead to increased NF-κB activation, causing an increase in the PRA/PRB ratio. We examined the effects of progesterone or cyclo-oxygenase 2 (Cox2) inhibitor treatments on the PRA/PRB ratio in silico. The model predicted that high doses of progesterone and Cox2 inhibition would be effective in preventing an NF-κB-induced PRA/PRB ratio increase to the levels found during labor. Our data illustrate the use of dynamic biological computer simulations to test the effectiveness of therapeutic interventions. This may allow the early rejection of ineffective therapies prior to expensive field trials.

Mapping Change in Large Networks:

Change is a fundamental ingredient of interaction patterns in biology, technology, the economy, and science itself: Interactions within and between organisms change; transportation patterns by air, land, and sea all change; the global financial flow changes; and the frontiers of scientific research change. Networks and clustering methods have become important tools to comprehend instances of these large-scale structures, but without methods to distinguish between real trends and noisy data, these approaches are not useful for studying how networks change. Only if we can assign significance to the partitioning of single networks can we distinguish meaningful structural changes from random fluctuations. Here we show that bootstrap resampling accompanied by significance clustering provides a solution to this problem. To connect changing structures with the changing function of networks, we highlight and summarize the significant structural changes with alluvial diagrams and realize de Solla Price's vision of mapping change in science: studying the citation pattern between about 7000 scientific journals over the past decade, we find that neuroscience has transformed from an interdisciplinary specialty to a mature and stand-alone discipline.

Using Ecological Null Models to Assess the Potential for Marine Protected Area Networks to Protect Biodiversity:

Marine protected area (MPA) networks have been proposed as a principal method for conserving biological diversity, yet patterns of diversity may ultimately complicate or compromise the development of such networks. We show how a series of ecological null models can be applied to assemblage data across sites in order to identify non-random biological patterns likely to influence the effectiveness of MPA network design. We use fish census data from Caribbean fore-reefs as a test system and demonstrate that: 1) site assemblages were nested, such that species found on sites with relatively few species were subsets of those found on sites with relatively many species, 2) species co-occurred across sites more than expected by chance once species-habitat associations were accounted for, and 3) guilds were most evenly represented at the richest sites and richness among all guilds was correlated (i.e., species and trophic diversity were closely linked). These results suggest that the emerging Caribbean marine protected area network will likely be successful at protecting regional diversity even if planning is largely constrained by insular, inventory-based design efforts. By recasting ecological null models as tests of assemblage patterns likely to influence management action, we demonstrate how these classic tools of ecological theory can be brought to bear in applied conservation problems.

Pego do Diabo (Loures, Portugal): Dating the Emergence of Anatomical Modernity in Westernmost Eurasia:

Neandertals and the Middle Paleolithic persisted in the Iberian Peninsula south of the Ebro drainage system for several millennia beyond their assimilation/replacement elsewhere in Europe. As only modern humans are associated with the later stages of the Aurignacian, the duration of this persistence pattern can be assessed via the dating of diagnostic occurrences of such stages. Using AMS radiocarbon and advanced pretreatment techniques, we dated a set of stratigraphically associated faunal samples from an Aurignacian III-IV context excavated at the Portuguese cave site of Pego do Diabo. Our results establish a secure terminus ante quem of ca.34,500 calendar years ago for the assimilation/replacement process in westernmost Eurasia. Combined with the chronology of the regional Late Mousterian and with less precise dating evidence for the Aurignacian II, they place the denouement of that process in the 37th millennium before present. These findings have implications for the understanding of the emergence of anatomical modernity in the Old World as a whole, support explanations of the archaic features of the Lagar Velho child's anatomy that invoke evolutionarily significant Neandertal/modern admixture at the time of contact, and counter suggestions that Neandertals could have survived in southwest Iberia until as late as the Last Glacial Maximum.

A New Chamber for Studying the Behavior of Drosophila:

Methods available for quickly and objectively quantifying the behavioral phenotypes of the fruit fly, Drosophila melanogaster, lag behind in sophistication the tools developed for manipulating their genotypes. We have developed a simple, easy-to-replicate, general-purpose experimental chamber for studying the ground-based behaviors of fruit flies. The major innovative feature of our design is that it restricts flies to a shallow volume of space, forcing all behavioral interactions to take place within a monolayer of individuals. The design lessens the frequency that flies occlude or obscure each other, limits the variability in their appearance, and promotes a greater number of flies to move throughout the center of the chamber, thereby increasing the frequency of their interactions. The new chamber design improves the quality of data collected by digital video and was conceived and designed to complement automated machine vision methodologies for studying behavior. Novel and improved methodologies for better quantifying the complex behavioral phenotypes of Drosophila will facilitate studies related to human disease and fundamental questions of behavioral neuroscience.

Categories

More like this