As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:
Visual Search for Human Gaze Direction by a Chimpanzee (Pan troglodytes):
Humans detect faces with direct gazes among those with averted gazes more efficiently than they detect faces with averted gazes among those with direct gazes. We examined whether this "stare-in-the-crowd" effect occurs in chimpanzees (Pan troglodytes), whose eye morphology differs from that of humans (i.e., low-contrast eyes, dark sclera). An adult female chimpanzee was trained to search for an odd-item target (front view of a human face) among distractors that differed from the target only with respect to the direction of the eye gaze. During visual-search testing, she performed more efficiently when the target was a direct-gaze face than when it was an averted-gaze face. This direct-gaze superiority was maintained when the faces were inverted and when parts of the face were scrambled. Subsequent tests revealed that gaze perception in the chimpanzee was controlled by the contrast between iris and sclera, as in humans, but that the chimpanzee attended only to the position of the iris in the eye, irrespective of head direction. These results suggest that the chimpanzee can discriminate among human gaze directions and are more sensitive to direct gazes. However, limitations in the perception of human gaze by the chimpanzee are suggested by her inability to completely transfer her performance to faces showing a three-quarter view.
Sensory Regulation of Neuroligins and Neurexin I in the Honeybee Brain:
Neurexins and neuroligins, which have recently been associated with neurological disorders such as autism in humans, are highly conserved adhesive proteins found on synaptic membranes of neurons. These binding partners produce a trans-synaptic bridge that facilitates maturation and specification of synapses. It is believed that there exists an optimal spatio-temporal code of neurexin and neuroligin interactions that guide synapse formation in the postnatal developing brain. Therefore, we investigated whether neuroligins and neurexin are differentially regulated by sensory input using a behavioural model system with an advanced capacity for sensory processing, learning and memory, the honeybee. Whole brain expression levels of neuroligin 1-5 (NLG1-5) and neurexin I (NrxI) were estimated by qRT-PCR analysis in three different behavioural paradigms: sensory deprivation, associative scent learning, and lateralised sensory input. Sensory deprived bees had a lower level of NLG1 expression, but a generally increased level of NLG2-5 and NrxI expression compared to hive bees. Bees that had undergone associative scent training had significantly increased levels of NrxI, NLG1 and NLG3 expression compared to untrained control bees. Bees that had lateralised sensory input after antennal amputation showed a specific increase in NLG1 expression compared to control bees, which only happened over time. Our results suggest that (1) there is a lack of synaptic pruning during sensory deprivation; (2) NLG1 expression increases with sensory stimulation; (3) concomitant changes in gene expression suggests NrxI interacts with all neuroligins; (4) there is evidence for synaptic compensation after lateralised injury.
Previous research has indicated the importance of the frontal lobe and its 'executive' connections to other brain structures as crucial in explaining primate neocortical adaptations. However, a representative sample of volumetric measurements of frontal connective tissue (white matter) has not been available. In this study, we present new volumetric measurements of white and grey matter in the frontal and non-frontal neocortical lobes from 18 anthropoid species. We analyze this data in the context of existing theories of neocortex, frontal lobe and white versus grey matter hyperscaling. Results indicate that the 'universal scaling law' of neocortical white to grey matter applies separately for frontal and non-frontal lobes; that hyperscaling of both neocortex and frontal lobe to rest of brain is mainly due to frontal white matter; and that changes in frontal (but not non-frontal) white matter volume are associated with changes in rest of brain and basal ganglia, a group of subcortical nuclei functionally linked to 'executive control'. Results suggest a central role for frontal white matter in explaining neocortex and frontal lobe hyperscaling, brain size variation and higher neural structural connectivity in anthropoids.
Characterizing relationships between individual body size and trophic niche position is essential for understanding how population and food-web dynamics are mediated by size-dependent trophic interactions. However, whether (and how) intraspecific size-trophic relationships (i.e., trophic ontogeny pattern at the population level) vary with time remains poorly understood. Using archival specimens of a freshwater predatory fish Gymnogobius isaza (Tanaka 1916) from Lake Biwa, Japan, we assembled a long-term (>40 years) time-series of the size-dependence of trophic niche position by examining nitrogen stable isotope ratios (δ15N) of the fish specimens. The size-dependence of trophic niche position was defined as the slope of the relationship between δ15N and log body size. Our analyses showed that the slope was significantly positive in about 60% of years and null in other years, changing through time. This is the first quantitative (i.e., stable isotope) evidence of long-term variability in the size-trophic relationship in a predatory fish. This finding had implications for the fish trophic dynamics, despite that about 60% of the yearly values were not statistically different from the long-term average. We proposed hypotheses for the underlying mechanism of the time-varying size-trophic relationship.
Maternal effects--where an individual's phenotype is influenced by the phenotype or environment of its mother--are taxonomically and ecologically widespread. Yet, their role in the origin of novel, complex traits remains unclear. Here we investigate the role of maternal effects in influencing the induction of a novel resource-use phenotype. Spadefoot toad tadpoles, Spea multiplicata, often deviate from their normal development and produce a morphologically distinctive carnivore-morph phenotype, which specializes on anostracan fairy shrimp. We evaluated whether maternal investment influences expression of this novel phenotype. We found that larger females invested in larger eggs, which, in turn, produced larger tadpoles. Such larger tadpoles are better able to capture the shrimp that induce carnivores. By influencing the expression of novel resource-use phenotypes, maternal effects may play a largely underappreciated role in the origins of novelty.
Variation in individual behavior within social groups can affect the fitness of the group as well as the individual, and can be caused by a combination of genetic and environmental factors. However, the molecular factors associated with individual variation in social behavior remain relatively unexplored. We used honey bees (Apis mellifera) as a model to examine differences in socially-regulated behavior among individual workers, and used transcriptional profiling to determine if specific gene expression patterns are associated with these individual differences. In honey bees, the reproductive queen produces a pheromonal signal that regulates many aspects of worker behavior and physiology and maintains colony organization. Here, we demonstrate that there is substantial natural variation in individual worker attraction to queen pheromone (QMP). Furthermore, worker attraction is negatively correlated with ovariole number--a trait associated with reproductive potential in workers. We identified transcriptional differences in the adult brain associated with individual worker attraction to QMP, and identified hundreds of transcripts that are organized into statistically-correlated gene networks and associated with this response. Our studies demonstrate that there is substantial variation in worker attraction to QMP among individuals, and that this variation is linked with specific differences in physiology and brain gene expression patterns. This variation in individual response thresholds may reveal underlying variation in queen-worker reproductive conflict, and may mediate colony function and productivity by creating variation in individual task performance.
Same-Sex Gaze Attraction Influences Mate-Choice Copying in Humans:
Mate-choice copying occurs when animals rely on the mating choices of others to inform their own mating decisions. The proximate mechanisms underlying mate-choice copying remain unknown. To address this question, we tracked the gaze of men and women as they viewed a series of photographs in which a potential mate was pictured beside an opposite-sex partner; the participants then indicated their willingness to engage in a long-term relationship with each potential mate. We found that both men and women expressed more interest in engaging in a relationship with a potential mate if that mate was paired with an attractive partner. Men and women's attention to partners varied with partner attractiveness and this gaze attraction influenced their subsequent mate choices. These results highlight the prevalence of non-independent mate choice in humans and implicate social attention and reward circuitry in these decisions.
The diversity and complexity of invertebrate communities usually result in their exclusion from conservation activities. Here we provide a step process for assessing predominantly ground-dwelling Afrotemperate forest invertebrates' (earthworms, centipedes, millipedes, ants, molluscs) potential as surrogates for conservation and indicators for monitoring. We also evaluated sampling methods (soil and litter samples, pitfall traps, active searching quadrats and tree beating) and temporal (seasonal) effects. Lack of congruence of species richness across taxa indicated poor surrogacy potential for any of the focus taxa. Based on abundance and richness, seasonal stability, and ease of sampling, molluscs were the most appropriate taxon for use in monitoring of disturbance impacts. Mollusc richness was highest in March (Antipodal late summer wet season). The most effective and efficient methods were active searching quadrats and searching litter samples. We tested the effectiveness of molluscs as indicators for monitoring by contrasting species richness and community structure in burned relative to unburned forests. Both species richness and community structure changed significantly with burning. Some mollusc species (e.g. Macroptychia africana) showed marked negative responses to burning, and these species have potential for use as indicators. Despite habitat type (i.e., Afrotemperate forest) being constant, species richness and community structure varied across forest patches. Therefore, in conservation planning, setting targets for coarse filter features (e.g., habitat type) requires fine filter features (e.g., localities for individual species). This is especially true for limited mobility taxa such as those studied here. Molluscs have high potential for indicators for monitoring, and this requires broader study.
Living the Sweet Life: How Does a Plant Pathogenic Fungus Acquire Sugar from Plants?:
Plant diseases are an important constraint on worldwide crop production, accounting for losses of 10-30% of the global harvest each year [1]. As a consequence, crop diseases represent a significant threat to ensuring global food security. To feed the growing human population it will be necessary to double food production by 2050, which will require the sustainable intensification of world agriculture in an era of unpredictable climate change [2],[3]. Controlling the most important plant diseases represents one of the best means of delivering as much of the current productivity of crops as possible. To accomplish this task, a fundamental understanding of the biology of plant infection by disease-causing agents, such as viruses, bacteria, and fungi will be necessary [1],[2].
Paleovirology--Modern Consequences of Ancient Viruses:
Within the past century, a number of "emerging viruses" with pathogenic properties, such as HIV-1, SARS-CoV, and several novel reassortments of influenza A, have entered the human population on a large scale. However, novel pathogenic viral infections of humans are not unique to modern history. "Paleovirology" is the study of ancient extinct viruses (called "paleoviruses") and the effects that these agents have had on the evolution of their hosts. Thus far, the study of these viruses has mostly been limited to endogenous retroviruses that can be directly identified from their remnants in host genomes. However, one can infer the existence of other paleoviruses from their evolutionary pressures on host genes. We suggest that selection to survive the pathogenic effects of these viruses has shaped our repertoire of antiviral defenses in ways that impact our resistance or susceptibility to modern-day emerging viruses.
The Global Research Neglect of Unassisted Smoking Cessation: Causes and Consequences:
As with problem drinking, gambling, and narcotics use [1]-[9] population studies show consistently that a large majority of smokers who permanently stop smoking do so without any form of assistance [10]-[15]. In 2003, some 20 years after the introduction of cessation pharmacotherapies, smokers trying to stop unaided in the past year were twice as numerous as those using pharmacotherapies and only 8.8% of US quit attempters used a behavioural treatment [16]. Moreover, despite the pharmaceutical industry's efforts to promote pharmacologically mediated cessation and numerous clinical trials demonstrating the efficacy of pharmacotherapy, the most common method used by most people who have successfully stopped smoking remains unassisted cessation (cold turkey or reducing before quitting [16],[17]). In 1986, the American Cancer Society reported that: "Over 90% of the estimated 37 million people who have stopped smoking in this country since the Surgeon General's first report linking smoking to cancer have done so unaided." [18]. Today, unassisted cessation continues to lead the next most successful method (nicotine replacement therapy [NRT]) by a wide margin [15],[16].
Visceral leishmaniasis (VL) is a potentially deadly parasitic disease that affects 200,000 to 300,000 people per year in the Indian subcontinent, where an effort is currently underway to eliminate the disease. Studies have identified fairly consistent patterns of risk factors for VL. This information can help to inform the elimination effort. Because humans form the sole source of infection, clustering of VL cases is a prominent feature, both at the household level and on a larger scale. Mud walls, dampness in houses, and peri-domestic vegetation increase infection risk by promoting the survival of the insect vector. Bed nets, sleeping on a cot and indoor residual spraying decrease risk. The presence of cattle is associated with increased risk in some studies and decreased risk in others, reflecting a complex effect on vector abundance and vector infection rates. Poverty is a major underlying factor increasing risk of VL infection and disease. A well-designed demonstration project is needed to provide direct proof of principle for elimination and to identify the most effective maintenance activities to prevent a rapid return of disease when interventions are scaled back.
- Log in to post comments