New and Exciting in PLoS ONE

There are 17 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

The Extent of the Preserved Feathers on the Four-Winged Dinosaur Microraptor gui under Ultraviolet Light:

The holotype of the theropod non-avian dinosaur Microraptor gui from the Early Cretaceous of China shows extensive preservation of feathers in a halo around the body and with flight feathers associated with both the fore and hindlimbs. It has been questioned as to whether or not the feathers did extend into the halo to reach the body, or had disassociated and moved before preservation. This taxon has important implications for the origin of flight in birds and the possibility of a four-winged gliding phase. Examination of the specimen under ultraviolet light reveals that these feathers actually reach the body of the animal and were not disassociated from the bones. Instead they may have been chemically altered by the body tissues of the animal meaning that they did not carbonise close into the animal or more likely were covered by other decaying tissue, though evidence of their presence remains. These UV images show that the feathers preserved on the slab are genuinely associated with the skeleton and that their arrangement and orientation is likely correct. The methods used here to reveal hidden features of the specimen may be applicable to other specimens from the fossil beds of Liaoning that produced Microraptor.

Read a blog post by the author of this article, an interview with the author, a blog post by the article's Academic Editor, and another blog post covering this paper.

Circadian Plasticity in Photoreceptor Cells Controls Visual Coding Efficiency in Drosophila melanogaster:

In the fly Drosophila melanogaster, neuronal plasticity of synaptic terminals in the first optic neuropil, or lamina, depends on early visual experience within a critical period after eclosion [1]. The current study revealed two additional and parallel mechanisms involved in this type of synaptic terminal plasticity. First, an endogenous circadian rhythm causes daily oscillations in the volume of photoreceptor cell terminals. Second, daily visual experience precisely modulates the circadian time course and amplitude of the volume oscillations that the photoreceptor-cell terminals undergo. Both mechanisms are separable in their molecular basis. We suggest that the described neuronal plasticity in Drosophila ensures continuous optimal performance of the visual system over the course of a 24 h-day. Moreover, the sensory system of Drosophila cannot only account for predictable, but also for acute, environmental changes. The volumetric changes in the synaptic terminals of photoreceptor cells are accompanied by circadian and light-induced changes of presynaptic ribbons as well as extensions of epithelial glial cells into the photoreceptor terminals, suggesting that the architecture of the lamina is altered by both visual exposure and the circadian clock. Clock-mutant analysis and the rescue of PER protein rhythmicity exclusively in all R1-6 cells revealed that photoreceptor-cell plasticity is autonomous and sufficient to control visual behavior. The strength of a visually guided behavior, the optomotor turning response, co-varies with synaptic-terminal volume oscillations of photoreceptor cells when elicited at low light levels. Our results show that behaviorally relevant adaptive processing of visual information is performed, in part, at the level of visual input level.

Mark My Words: Tone of Voice Changes Affective Word Representations in Memory:

The present study explored the effect of speaker prosody on the representation of words in memory. To this end, participants were presented with a series of words and asked to remember the words for a subsequent recognition test. During study, words were presented auditorily with an emotional or neutral prosody, whereas during test, words were presented visually. Recognition performance was comparable for words studied with emotional and neutral prosody. However, subsequent valence ratings indicated that study prosody changed the affective representation of words in memory. Compared to words with neutral prosody, words with sad prosody were later rated as more negative and words with happy prosody were later rated as more positive. Interestingly, the participants' ability to remember study prosody failed to predict this effect, suggesting that changes in word valence were implicit and associated with initial word processing rather than word retrieval. Taken together these results identify a mechanism by which speakers can have sustained effects on listener attitudes towards word referents.

When the Sun Prickles Your Nose: An EEG Study Identifying Neural Bases of Photic Sneezing:

Exposure to bright light such as sunlight elicits a sneeze or prickling sensation in about one of every four individuals. This study presents the first scientific examination of this phenomenon, called 'the photic sneeze reflex'. In the present experiment, 'photic sneezers' and controls were exposed to a standard checkerboard stimulus (block 1) and bright flashing lights (block 2) while their EEG (electro-encephalogram) was recorded. Remarkably, we found a generally enhanced excitability of the visual cortex (mainly in the cuneus) to visual stimuli in 'photic sneezers' compared with control subjects. In addition, a stronger prickling sensation in the nose of photic sneezers was found to be associated with activation in the insula and stronger activation in the secondary somatosensory cortex. We propose that the photic sneeze phenomenon might be the consequence of higher sensitivity to visual stimuli in the visual cortex and of co-activation of somatosensory areas. The 'photic sneeze reflex' is therefore not a classical reflex that occurs only at a brainstem or spinal cord level but, in stark contrast to many theories, involves also specific cortical areas.

Categories

More like this