New and Exciting in PLoS this week

Let's see what's new in PLoS ONE, PLoS Biology and PLoS Medicine today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

Avian Magnetoreception: Elaborate Iron Mineral Containing Dendrites in the Upper Beak Seem to Be a Common Feature of Birds:

The magnetic field sensors enabling birds to extract orientational information from the Earth's magnetic field have remained enigmatic. Our previously published results from homing pigeons have made us suggest that the iron containing sensory dendrites in the inner dermal lining of the upper beak are a candidate structure for such an avian magnetometer system. Here we show that similar structures occur in two species of migratory birds (garden warbler, Sylvia borin and European robin, Erithacus rubecula) and a non-migratory bird, the domestic chicken (Gallus gallus). In all these bird species, histological data have revealed dendrites of similar shape and size, all containing iron minerals within distinct subcellular compartments of nervous terminals of the median branch of the Nervus ophthalmicus. We also used microscopic X-ray absorption spectroscopy analyses to identify the involved iron minerals to be almost completely Fe III-oxides. Magnetite (Fe II/III) may also occur in these structures, but not as a major Fe constituent. Our data suggest that this complex dendritic system in the beak is a common feature of birds, and that it may form an essential sensory basis for the evolution of at least certain types of magnetic field guided behavior.

Analysis of the Putative Remains of a European Patron Saint-St. Birgitta:

Saint Birgitta (Saint Bridget of Sweden) lived between 1303 and 1373 and was designated one of Europe's six patron saints by the Pope in 1999. According to legend, the skulls of St. Birgitta and her daughter Katarina are maintained in a relic shrine in Vadstena abbey, mid Sweden. The origin of the two skulls was assessed first by analysis of mitochondrial DNA (mtDNA) to confirm a maternal relationship. The results of this analysis displayed several differences between the two individuals, thus supporting an interpretation of the two skulls not being individuals that are maternally related. Because the efficiency of PCR amplification and quantity of DNA suggested a different amount of degradation and possibly a very different age for each of the skulls, an orthogonal procedure, radiocarbon dating, was performed. The radiocarbon dating results suggest an age difference of at least 200 years and neither of the dating results coincides with the period St. Birgitta or her daughter Katarina lived. The relic, thought to originate from St. Birgitta, has an age corresponding to the 13th century (1215-1270 cal AD, 2Ï confidence), which is older than expected. Thus, the two different analyses are consistent in questioning the authenticity of either of the human skulls maintained in the Vadstena relic shrine being that of St. Birgitta. Of course there are limitations when interpreting the data of any ancient biological materials and these must be considered for a final decision on the authenticity of the remains.

In Situ Hybridization Analysis of the Expression of Futsch, Tau, and MESK2 Homologues in the Brain of the European Honeybee (Apis mellifera L.):

The importance of visual sense in Hymenopteran social behavior is suggested by the existence of a Hymenopteran insect-specific neural circuit related to visual processing and the fact that worker honeybee brain changes morphologically according to its foraging experience. To analyze molecular and neural bases that underlie the visual abilities of the honeybees, we used a cDNA microarray to search for gene(s) expressed in a neural cell-type preferential manner in a visual center of the honeybee brain, the optic lobes (OLs). Expression analysis of candidate genes using in situ hybridization revealed two genes expressed in a neural cell-type preferential manner in the OLs. One is a homologue of Drosophila futsch, which encodes a microtubule-associated protein and is preferentially expressed in the monopolar cells in the lamina of the OLs. The gene for another microtubule-associated protein, tau, which functionally overlaps with futsch, was also preferentially expressed in the monopolar cells, strongly suggesting the functional importance of these two microtubule-associated proteins in monopolar cells. The other gene encoded a homologue of Misexpression Suppressor of Dominant-negative Kinase Suppressor of Ras 2 (MESK2), which might activate Ras/MAPK-signaling in Drosophila. MESK2 was expressed preferentially in a subclass of neurons located in the ventral region between the lamina and medulla neuropil in the OLs, suggesting that this subclass is a novel OL neuron type characterized by MESK2-expression. These three genes exhibited similar expression patterns in the worker, drone, and queen brains, suggesting that they function similarly irrespective of the honeybee sex or caste. Here we identified genes that are expressed in a monopolar cell (Amfutsch and Amtau) or ventral medulla-preferential manner (AmMESK2) in insect OLs. These genes may aid in visualizing neurites of monopolar cells and ventral medulla cells, as well as in analyzing the function of these neurons.

Explicit Logic Circuits Predict Local Properties of the Neocortex's Physiology and Anatomy:

Two previous articles proposed an explicit model of how the brain processes information by its organization of synaptic connections. The family of logic circuits was shown to generate neural correlates of complex psychophysical phenomena in different sensory systems. Here it is shown that the most cost-effective architectures for these networks produce correlates of electrophysiological brain phenomena and predict major aspects of the anatomical structure and physiological organization of the neocortex. The logic circuits are markedly efficient in several respects and provide the foundation for all of the brain's combinational processing of information. At the local level, these networks account for much of the physical structure of the neocortex as well its organization of synaptic connections. Electronic implementations of the logic circuits may be more efficient than current electronic logic arrays in generating both Boolean and fuzzy logic.

The Smallest Known Genomes of Multicellular and Toxic Cyanobacteria: Comparison, Minimal Gene Sets for Linked Traits and the Evolutionary Implications:

Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain metabolic functions for reproduction and nitrogen (N2) fixation into specialized cell types (e.g. akinetes, heterocysts and diazocytes). Only a few filamentous, differentiated cyanobacterial species, with genome sizes over 5 Mb, have been sequenced. We sequenced the genomes of two strains of closely related filamentous cyanobacterial species to yield further insights into the molecular basis of the traits of N2 fixation, filament formation and cell differentiation. Cylindrospermopsis raciborskii CS-505 is a cylindrospermopsin-producing strain from Australia, whereas Raphidiopsis brookii D9 from Brazil synthesizes neurotoxins associated with paralytic shellfish poisoning (PSP). Despite their different morphology, toxin composition and disjunct geographical distribution, these strains form a monophyletic group. With genome sizes of approximately 3.9 (CS-505) and 3.2 (D9) Mb, these are the smallest genomes described for free-living filamentous cyanobacteria. We observed remarkable gene order conservation (synteny) between these genomes despite the difference in repetitive element content, which accounts for most of the genome size difference between them. We show here that the strains share a specific set of 2539 genes with >90% average nucleotide identity. The fact that the CS-505 and D9 genomes are small and streamlined compared to those of other filamentous cyanobacterial species and the lack of the ability for heterocyst formation in strain D9 allowed us to define a core set of genes responsible for each trait in filamentous species. We presume that in strain D9 the ability to form proper heterocysts was secondarily lost together with N2 fixation capacity. Further comparisons to all available cyanobacterial genomes covering almost the entire evolutionary branch revealed a common minimal gene set for each of these cyanobacterial traits.

VertNet: A New Model for Biodiversity Data Sharing:

Biodiversity is in a crisis caused by multiple human impacts on the environment [1]-[3]. The immediate and critical tasks in addressing this crisis are to examine global biodiversity patterns and document changes through time and space in order to understand the factors contributing to loss of biodiversity [4]. Meeting this challenge has emerged as a global priority [5]-[7] that requires approaches to mobilize data across broad geographic and taxonomic ranges.

The community of vertebrate natural history collections has begun to meet this challenge by establishing social and technological infrastructures that provide open access to species occurrence data through broad participation and funding from the US National Science Foundation (NSF) and the Global Biodiversity Information Facility (GBIF). One result is VertNet, a publicly accessible database of vertebrate biodiversity data from natural history collections around the world. VertNet currently consists of four existing global vertebrate networks: Mammal Networked Information System (MaNIS) (http://manisnet.org - mammals [8]); Ornithological Information System (ORNIS) (http://ornisnet.org - birds); HerpNET (http://herpnet.org - amphibians and reptiles); and FishNet 2 (http://www.fishnet2.net - fishes). These networks collectively mobilize over 52 million records from over 70 institutions, which represent about 70% of all the vertebrate species occurrence data that are accessible through GBIF. VertNet was created to develop the tools and infrastructure necessary to make the data in these distributed networks available in a standard format to maximize their potential for understanding and protecting biodiversity. GBIF and VertNet work synergistically to enhance biodiversity data mobilization efforts. GBIF has identified the important role that VertNet will play in its new emphasis on decentralization of services and applications [5]. In particular, VertNet provides important data maintenance services, including data cleaning and indexing, thus removing development and deployment burdens for many fundamental tasks from GBIF.

Can Broader Diffusion of Value-Based Insurance Design Increase Benefits from US Health Care without Increasing Costs? Evidence from a Computer Simulation Model:

More money is spent per person on health care in the US than in any other country. US health care expenditure accounts for 16.2% of the gross domestic product and this figure is rising. Indeed, the increase in health care costs is outstripping the economy's growth rate. Consequently, US policy makers and providers of health insurance--health care in the US is largely provided by the private sector and is paid for through private health insurance or through government programs such as Medicare and Medicaid--are looking for better ways to control health expenditures. Although some health care cost reductions can be achieved by increasing efficiency, controlling the quantity of health care consumed is an essential component of strategies designed to reduce health expenditures. These strategies can target health care providers (for example, by requiring primary care physicians to provide referrals before their patients' insurance provides cover for specialist care) or can target consumers, often through cost sharing. Nowadays, most insurance plans include several tiers of cost sharing in which patients pay a larger proportion of the costs of expensive interventions than of cheap interventions.

Guidance for Developers of Health Research Reporting Guidelines:

Publishing health research is a thriving, and increasing, enterprise. On any given month about 63,000 new articles are indexed in PubMed, the United States National Library of Medicine's public access portal for health-related publications. However, the quality of reporting in most health care journals remains inadequate. Glasziou and colleagues [1] assessed descriptions of given treatments in 80 trials and systematic reviews for which summaries were published during one year (October 2005 to October 2006) in Evidence-Based Medicine, a journal that is aimed at physicians working in primary care and general medicine. Treatment descriptions were inadequate in 41 of the original published articles, which made their use in clinical practice difficult if not impossible to replicate. This is just one of numerous examples of a large and disturbing literature indicating the general failure in the quality of reporting health research [2]-[6]. Many publications lack clarity, transparency, and completeness in how the authors actually carried out their research.

Categories

More like this