New and Exciting in PLoS this week

Lots of interesting articles in PLoS Biology, PLoS Medicine, PLoS Neglected Tropical Diseases and PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

The Perfect Family: Decision Making in Biparental Care:

Previous theoretical work on parental decisions in biparental care has emphasized the role of the conflict between evolutionary interests of parents in these decisions. A prominent prediction from this work is that parents should compensate for decreases in each other's effort, but only partially so. However, experimental tests that manipulate parents and measure their responses fail to confirm this prediction. At the same time, the process of parental decision making has remained unexplored theoretically. We develop a model to address the discrepancy between experiments and the theoretical prediction, and explore how assuming different decision making processes changes the prediction from the theory. We assume that parents make decisions in behavioral time. They have a fixed time budget, and allocate it between two parental tasks: provisioning the offspring and defending the nest. The proximate determinant of the allocation decisions are parents' behavioral objectives. We assume both parents aim to maximize the offspring production from the nest. Experimental manipulations change the shape of the nest production function. We consider two different scenarios for how parents make decisions: one where parents communicate with each other and act together (the perfect family), and one where they do not communicate, and act independently (the almost perfect family). The perfect family model is able to generate all the types of responses seen in experimental studies. The kind of response predicted depends on the nest production function, i.e. how parents' allocations affect offspring production, and the type of experimental manipulation. In particular, we find that complementarity of parents' allocations promotes matching responses. In contrast, the relative responses do not depend on the type of manipulation in the almost perfect family model. These results highlight the importance of the interaction between nest production function and how parents make decisions, factors that have largely been overlooked in previous models.

Bayesian Estimation of Animal Movement from Archival and Satellite Tags:

The reliable estimation of animal location, and its associated error is fundamental to animal ecology. There are many existing techniques for handling location error, but these are often ad hoc or are used in isolation from each other. In this study we present a Bayesian framework for determining location that uses all the data available, is flexible to all tagging techniques, and provides location estimates with built-in measures of uncertainty. Bayesian methods allow the contributions of multiple data sources to be decomposed into manageable components. We illustrate with two examples for two different location methods: satellite tracking and light level geo-location. We show that many of the problems with uncertainty involved are reduced and quantified by our approach. This approach can use any available information, such as existing knowledge of the animal's potential range, light levels or direct location estimates, auxiliary data, and movement models. The approach provides a substantial contribution to the handling uncertainty in archival tag and satellite tracking data using readily available tools.

Dynamic Coupling of Pattern Formation and Morphogenesis in the Developing Vertebrate Retina:

The vertebrate brain contains a point-to-point representation of sensory input from the eye. This visual map forms during embryonic development, by neuronal cells of the retina sending targeted axon projections to the brain. Since the projection needs to wire up neighboring cell positions in the retina to neighboring target areas in the brain, all retinal cells must harbor a defined spatial coordinate as prerequisite for map formation. How such a retinal coordinate system is established and maintained in the dynamically evolving embryo is a fundamental, but unresolved, question. By combining genetic analysis and in vivo imaging in zebrafish embryos, we have tracked the developmental origin of cell coordinates in the retina. We find that three related Fgf signals emanating from outside the eye define relative cell positions in the retina very early, already at the onset of its formation. But the absolute position of retinal cells relative to the body axes is greatly rearranged during subsequent development. In this phase, surprisingly, the same Fgf signals that at first defined retinal cell positions now balance asymmetric cell movements and cell shape changes, which are required for harmonic retinal growth and the final alignment of cell coordinates in the eye.

The Comparative Oncology Trials Consortium: Using Spontaneously Occurring Cancers in Dogs to Inform the Cancer Drug Development Pathway:

Despite evidence of drug efficacy in mouse models of cancer, many novel anti-cancer agents fail in human cancer patients because of unacceptable toxicity or poor efficacy [1]. Naturally occurring tumors in dogs and other animals have clinical and biological similarities to human cancers that are difficult to replicate in other model systems. A recently launched cooperative effort, the National Cancer Institute's (NCI's) Comparative Oncology Trials Consortium (COTC; http://ccr.cancer.gov/resources/cop/COTCâ.asp ), now provides infrastructure and resources needed to integrate these naturally occurring cancer models into the development of new human cancer drugs, devices, and imaging techniques.

Categories

More like this