# How far will the car go?

Honestly, I was going to add this to my previous post about the jumping car but I didn't because I wanted to finish. So, here it is and more. Actually, I will just make a projectile motion spreadsheet. That way, anytime you want to do a projectile motion problem, you can come here. Maybe this is a bad idea, but I am going to do it anyway.

To start with, I will just say that for projectile motion the horizontal and vertical motions are independent (except for the time it takes). If you want a refresher on projectile motion, here you go. Oh, a couple of assumptions:

• Object starts at x = 0 m and y = h m.
• The object is shot at an angle theta above the horizontal with an initial velocity v0
• There is a constant vertical acceleration g
• The object leaves the starting point at time t
• The final vertical position will be on the ground (at y= 0 m)

The x-motion will then be:

The y-motion will be:

If I want to find out how far this thing will go, I can use the y-motion to solve for the time (I will need the quadratic equation). Then I can take this time and plug it into the x-motion equation to find out how far it goes. Here are the calculations in a spreadsheet.

If I put in an initial velocity of 15 m/s at an angle of 24 degrees with an initial height of 1.5 meters, the car would go about 20 meters (65 feet).

Yeeeee HAWWWWWW. Next, on The Dukes!

Tags

### More like this

##### What angle should you throw a football for maximum range?
College football season is coming to an end (I guess technically, the season is over - it is bowl season). Anyway, this is something I wanted to do a long time ago, but I kept getting side tracked. If I don't do it now, I will never do it. Most people know that a ball without air resistance (…
##### More on the Giant Water Slide Jump
This Giant water slide video is extremely popular on the internets. Maybe you have not seen it (doubtful), then here it is: This is such an incredible stunt that the very first question that comes up is - fake? or not fake? From my previous analysis, I can say: Even though there is some slight…
##### How to 'Scale Down' Projectile Motion
Maybe you have noticed how much material there was (for me at least) in last week's MythBusters. One of the myths they looked at was the bus jumping over a gap in the road from the movie Speed. I am not looking at that myth, it has been discussed many times in many places. Rather, I am going to…
##### Snow Board Jump Help
I really shouldn't do this. I might be helping someone to set up something dangerous. But, I am going to anyway. Here is a question posted on some forum. (actually, it is from math help forum) "I'm anticipating a good winter this year, one with lots of snow. My yard is sloped quite a bit and it…

i am glad you calculated this. i wondered how far it flew too.

Police report (page 4) indicates 123 feet of skid marks *before* the toll booth so she was initially going faster than the 53 mph you calculated yesterday.

In the picture

http://blogs.dallasobserver.com/unfairpark/moredfwcrashphotos.jpg

you can see the car in the background of the top-left picture and the skid marks in the off-diagonal pictures shows the car approached at an angle.

65 feet seems reasonable, if not a little high since the car has to skid/grind to a stop upon landing.

Off-topic question.
As anyone who lives by a beach knows, wind surfers / kite boarders can surf up the beach and then turn around and surf back down the beach.

1) How is this possible?
2) Are there certain wind directions where it is impossible? (I suspect it is not possible if the wind is parallel along the beach.)
3) Is it absolutely necessary to have a keel on the âboardâ? Otherwise, how do they manage not to be blown on-shore (or out to sea)? Where is the force to stop acceleration on/off-shore coming from?

EXAMPLE: see http://www.youtube.com/watch?v=9l4O3D27ubk (Fun in the wind at the beach, ocracokewaves)
I notice in this video that in one direction you are looking at the interior of the âsailâ and in the other direction you are looking at the exterior. Although at the beach we noticed that sometimes this didnât apply which we guessed means the wind direction was variable.

Thanks.