Homo sapiens can bite hard, after all

i-3006a7edaebf1a0c93616579fee1ddd9-skull-stress-comparisons-thumb-500x330-51560.jpg


Three-dimensional models of hominoid skulls used in the study - (a) Hylobates lar; (b) Pongo pygmaeus; (c) Pan troglodytes; (d) Gorilla gorilla; (e) Australopithecus africanus; (f ) Paranthropus boisei; (g) Homo sapiens. They have been scaled to the same surface area, and the colors denote areas of stress (blue = minimal stress, pink = high stress). From Wroe et al, 2010.


It is all too easy to think of human evolution in linear terms. From our 21st century vantage point we can look back through Deep Time for the first glimmerings of the traits we see in ourselves, and despite what we have come to know about the undirected, branching pattern of evolution, the origin of our species is often portrayed as a slow rise from the ape in which brains eventually overtook brute strength. One of the most prominent examples of this was modifications made to our jaws. It has been widely assumed that, compared to apes and our extinct hominin relatives, we have relatively weak jaws - why should we need to exert heavy bite forces if our lineage developed tools to process food before it entered our mouths? It was our relatives among the robust australopithecines - namely Paranthropus - which obviously developed the strongest jaws, but a new study just published in the Proceedings of the Royal Society B questions these long-held assumptions.

As outlined in the introduction of the paper by Stephen Wroe, Toni Ferrara, Colin McHenry, Darren Curnoe, and Uphar Chamoli, the hypothesis that our species has a diminished bite force has primarily been based upon the study of other, obviously heavier-jawed hominins. On the surface this would seem to make sense - our jaws are nowhere near as robust as those of those of the multiple species of Paranthropus - yet our teeth seem well-suited to withstanding heavy bite forces. Among living apes, for example, we have the thickest amount of enamel, one of several features we posses which are consistent with the ability of teeth to withstand strong bites. Some have argued that these features are holdovers from when our prehistoric ancestors required stronger bites to process tough foods, but the team behind the new paper decided to create a detailed test which compared the bite mechanics of our species to some of our close hominin and hominid relatives, both living and extinct.

In order to investigate the "weak bite" hypothesis, the researchers used CT-scanned specimens to create three-dimensional models of the skulls of a white-handed gibbon, orangutan, chimpanzee, western gorilla, Australopithecus africanus, Paranthropus boisei, and, of course, Homo sapiens. (A model a crab-eating macaque skull was also made to check the results of this study with one carried out previsouly. Also, it is worth noting that all the skull models of extant species were based on female specimens and the fossil specimens were probably males.) From there the appropriate virtual muscles were reconstructed on each skull, with missing bits of the fossil skulls also filled in. Once the models were in place the scientists could then simulate the stresses placed upon the skulls as if they were clamping down on a hard object at different points in the jaw.

What the team found was that the amount of bite force each species was able to produce was generally proportional to body size, and while Paranthropus boisei had the highest estimated bite force, the results for our species were consistent with what would be expected for an ape of our size. In other words, the bite forces we are capable of exerting were not remarkably low, but were instead comparable to those of hominids with similar body mass. Additionally, these estimates were in accord with the relatively small amount of bite force data gathered from living people in non-Western populations, and these are probably a better measure of what our species is capable of than the lower results obtained through voluntary bite force measurements of Western study subjects.

But what about the stresses exerted on the teeth? Estimating bite forces at different parts of the jaw is just one part of determining what an organism is capable of. Humans might have powerful bites, but it would do a human little good to bite so hard that they broke their teeth or otherwise hurt themselves. To find out the scientists scaled the models to have the same total surface area and ran tests to see how the skulls and jaws of each species handled bite force stress. In general the highest amounts of stress were felt in the jaws rather than the skull - meaning that it was more likely that the lower jaw would become damaged due to high bite forces - but the human model was distinct because stress was distributed differently through the jaw. While Paranthropus and the gorilla appeared better able to cope with bite force stress in general, our jaws appeared to be well-adapted to reducing the stress exerted by quick, strong bites.

As the authors state, their results resolve what otherwise might seem like inconsistencies between what our teeth can handle and our gracile jaw musculature. We might not have the heavy jaws and massive muscles of Paranthropus, but we are more efficient biters, allowing us to exert high bite forces with a different anatomical arrangement. The lineage of hominins of which we are a part did not slowly lose their ability to bite hard as had previously been supposed, but, interestingly, our jaws are not well-suited to sustaining high bite forces for a long time. In other words, our jaws are capable of cracking open something like a nut or hard fruit which requires brief exertion of high bite forces, but they are not well-adapted to doing something like chewing on tough plant food for a long period of time. This raises some interesting questions about the inferred diets of extinct humans, and by utilizing similar modeling techniques paleontologists may be able to determine whether hominins were adapted to deliver short, strong bites, were chewing hard foods which took a longer amount of time to process, or were doing something different.

To see more images from this study and similar research, see the CompBiomechBlog.

Wroe, S., Ferrara, T., McHenry, C., Curnoe, D., & Chamoli, U. (2010). The craniomandibular mechanics of being human Proceedings of the Royal Society B: Biological Sciences DOI: 10.1098/rspb.2010.0509

Categories

More like this

For the longest time, people believed that the world's largest lizard, the Komodo dragon, killed its prey with a dirty mouth. Strands of rotting flesh trapped in its teeth harbour thriving colonies of bacteria and when the dragon bites an animal, these microbes flood into the wound and eventually…
The skull of Paranthropus boisei (AKA "Zinj," "Dear Boy," "Nutcracker Man," etc.). From Ungar et al. 2008. Ever since the discovery of the hominds we call Paranthropus robustus in 1938 and Paranthropus boisei in 1959, the dietary habits of these "robust australopithecines" have been…
More recollections from the CEE Functional Anatomy meeting: part I is here. We looked in the previous article at Robin Crompton's overview of primate locomotor ecology and evolution, Renate Weller's overview of new technologies, John Hutchinson's work on dinosaur biomechanics, and Jenny Clack's…
This article is reposted from the old Wordpress incarnation of Not Exactly Rocket Science. The blog is on holiday until the start of October, when I'll return with fresh material. The sabre-toothed cat is one of the most famous prehistoric animals and there is no question that it was a formidable…

Might the thicker enamel be related to longer H Sapiens lifetimes? Wear can come from time as well as force.

Clever, Paul. Another alternate idea: A diet with more carbohydrates generally (sugar not being as much an issue until recently) might promote tooth decay, so we'd need more enamel to "burn." Since tooth decay can kill, it would certainly be a factor in natural selection.

I find it hard to believe that we have a bite near the same class as a species with a herkin' sagittal crest. But the idea gorillas would need more stamina for chewing makes a lot of sense, so some results aren't as surprising as others.

By CS Shelton (not verified) on 22 Jun 2010 #permalink

I like diet, too. Don't grasses, for example, contain hard bits of silica or other minerals that can grind down enamel?

Considering that bruxists always hear from their dentists that clenching damages their teeth, and given that tooth enamel is really hard, why would it make sense to assume that humans have puny weak jaws?

By Interrobang (not verified) on 22 Jun 2010 #permalink

I always thought that a foreshortened jaw and face, like the ones we have, would indicate a stronger bite force. Cats have shorter faces and jaws then dogs do and have a more powerful bite. Dogs that are bred to have a strong bite, like bull dogs, tend to have foreshortened skulls as well. The positioning of our face and jaw make up for the more gracile appearance of the bones when compared to other primates.

By Susan Ferguson (not verified) on 22 Jun 2010 #permalink

What a coincidence; my gf is an occasional bruxist. Not often enough to merit a dentifrice, mostly in high stress times. She uses vodka to numb the pain when her tongue is bit up, so she can eat. Then she forgets it in her purse, and looks like a stereotypical movie drunk when people notice it. Haha!

Interesting point about dogs, Susan. Do cats actually have a proportionally stronger bite though? Now that I consider, hyenas have fairly short snouts, and wolverines (also known to eat bones) are very short-faced...

By CS Shelton (not verified) on 22 Jun 2010 #permalink

Also it would be fun to compare puny flat-faced primates like pygmy marmosets and tamirins to us.

By CS Shelton (not verified) on 22 Jun 2010 #permalink

... all the skull models of extant species were based on female specimens and the fossil specimens were probably males.

So why not collect skulls from males of the living species so as to be as consistent as possible?

Is there a shortage of fossilized skulls from female primates, or did the sampling for this test just happen to work out that way?

By Pierce R. Butler (not verified) on 23 Jun 2010 #permalink

Pierce - you're right, it was more to do with the shortage of females for the fossil species. Male primates do things with their skulls that, biomechanically, might confuse any signal from feeding ecology (i.e. they bite the hell out of each other during sexual competition). The idea was that the female morphology might be less influenced by agonistic behaviours and therefore any relationship between the skull morphology and feeding ecology would be clearer in the females. For the fossil species, though, the method requires nearly-complete specimens and these just happened to be (probably) male. It's not ideal, but sometimes in palaeontology we don't get much say in which specimens the fossil record gives us. Yes, there is definitely room for a follow-up study that includes males of the extant species, but that's work for another day.

I seem to recall research on diet impacting jaw size and bone density. If you ate a rougher diet, you ended up with thicker, bigger jaws and your wisdom teeth could more easily fit. It may be that we're seeing some non-genetic differences due to diet and upbringing.

Colin McHenry @ # 9 - thanks for filling that in.

Is it just the luck of the draw, or is there something about the pre/proto-homonid lifestyle that might have led to fewer intact female skulls becoming fossilized?

(I'm thinking of, say, child-encumbered mothers being more vulnerable to large predators, or pregnancy/nursing-related calcium depletion making bones more fragile...)

Male primates do things with their skulls that, biomechanically, might confuse any signal from feeding ecology (i.e. they bite the hell out of each other during sexual competition).

I'm tempted, in my benighted lay way, to correlate that with the folk observation that heavy-jawed men are more assertive. Ya think?

By Pierce R. Butler (not verified) on 23 Jun 2010 #permalink

I'm with CS-- I'm a little flummoxed by the results, having always bought hook, line & sinker into the "no sagittal crest" schema-- freeing up room for brain expansion & the like. Wild.

This raises some interesting questions about the inferred diets of extinct humans, and by utilizing similar modeling techniques paleontologists may be able to determine whether hominins were adapted to deliver short, strong bites, were chewing hard foods which took a longer amount of time to process, or were doing something different.

I'm with CS-- I'm a little flummoxed by the results, having always bought hook, line & sinker into the "no sagittal crest" schema