3D Live Peep Show: In the Brain

Imagine being able to observe the health status of your brain streaming real-time in 3D. Medical treatments for a range of neurovascular, neurological, cancerous and trauma-induced conditions would be far more effective, because snapshots over time would reveal the progression of a disease or damage.

This is not science fiction. Scientists at Stanford University have reported a new brain imaging technique in the journal Nature Medicine that takes a major step towards this goal. Proof of concept was demonstrated using mice.

i-1aa16c32ded403b47903d5b74708b23b-nm.2292-F3-thumb-275x200-60618.jpg

a) Two-dimensional projection of a three-dimensional stack of 220 images of dye-labeled vasculature acquired at ~3-μm increments over ~660 μm in depth. Supplementary Video 1 shows the entire image stack. (b) Time-lapse image sequence acquir...

According to the paper: (excerpts from their Abstract)

Here we introduce cellular-level time-lapse imaging deep within the live mammalian brain by one- and two-photon fluorescence microendoscopy over multiple weeks. Bilateral imaging sites allowed longitudinal comparisons within individual subjects, including of normal and diseased tissues.

To illustrate disease studies, we tracked deep lying gliomas by observing tumor growth, visualizing three-dimensional vasculature structure and determining microcirculatory speeds.

It is spectacular!

Supplementary Video 1 | 3D image stack of hippocampal blood vessels acquired in a live
mouse by two-photon microendoscopy and intravascular injection of fluorescein-dextran.
On day 22 following implantation of an imaging guide tube, a 1-mm-diameter microendoscope
was used to create an image stack extending 660 μm in depth and containing 220 images
acquired at 3 μm axial increments. The field of view is 1 mm in lateral extent. The 2D projection
of this image stack is shown in Fig. 3a.

From the Nature blog

The technology relies on miniature glass tubes, about half the width of a grain of rice, that are implanted into the deep brain of anaesthetized mice. A tiny optical instrument called a microendoscope is then threaded inside the tube, allowing researchers to return to exactly the same brain location -- down to the level of an individual cell -- repeatedly over weeks or months.

As a proof of principle, the Stanford team tracked the growth of glioma brain cancer cells. The following video shows a three-dimensional stack of 220 images each taken about 3 micrometers apart to reveal blood vessel growth in the hippocampus of wild-type mice.

Take a look at what happens over time:

Brain Peep.jpg

A time-lapse image sequence acquired in the dorsal striatum of an individual mouse by two-photon microendoscopy and intravascular injection of fluoresceindextran, on the specified days relative to the implantation of the imaging guide tube. Each image is labeled by the day of
image acquisition relative to the first imaging session and is a 2D projection of 5 images acquired at 5 μm axial increments from a stack of 180 μm total axial extent. Scale bar is 100 μm.

More like this

SUPPLEMENTARY FIGURE 22. Three-color multi-harmonic SI mode rendering of nuclear histones (blue), the nuclear membrane (red), and the actin cytoskeleton (green) in a fixed LLC-PK1 cell. Histones are labeled with mNeptune / H2B; the nuclear envelope is labeled with mEmerald / lamin B1; and the…
The journey undertaken by newly generated neurons in the adult brain is like the cellular equivalent of the arduous upstream migration of salmon returning to the rivers in which they were hatched. Soon after they are born in the subventricular zone near the back of the brain, these cells migrate to…
Every so often, I encounter a technical advance that is simply so crazy-cool that I have to talk about it. Dombeck et al. publishing in Neuron offer such an advance. They found a way to image the activity of whole fields of neurons using two-photon fluorescent microscopy -- a technique that I…
Virginia Hughes tells us about techniques to look inside the zebrafish brain. The gang at HHMI are using two photon imaging and clever image analysis to get very clear, sharp images of fluorescent neurons. Oy, that's pretty. This old codger did some of that stuff, many years ago, but you know…

This article is just the tonic I needed. Very interesting and its amazing and shows how far we've come in terms of technology. This type of research will really help us to make ground breaking improvements in medical science.

By Brian Smith (not verified) on 11 Feb 2011 #permalink

This type of technology amazes me, it could help doctors and researchers pinpoint exactly what is taking place during a course of treatment for many different diseases and disorders. The technology would also greatly improve the quality and efficiency of the healthcare one receives. I only wonder how accessible it will be in the future to patients who would benefit greatly from it but may not be able to afford it.