Hole in the Universe? What Hole?

Some of you who've been following astronomy for awhile might remember this report, where a group of astronomers reported finding a giant "void" in the Universe.

What is a void? Well, galaxies are distributed pretty randomly, but because of gravity, they cluster together. A small example is our local group which looks like this,

and a larger example is the Virgo cluster, which is about 1,000 times as massive as our local group, and looks like this:

Well, a void is the opposite of a cluster, where you have a large volume of space that's simply empty of galaxies and matter. This press release a year ago said that they had found the largest void ever found in the Universe, and that it was causing an unusually large cold spot to appear in the Cosmic Microwave Background. Here's a picture of their findings:

I didn't believe this when it came out, and I was skeptical when reports came out. Well, a team consisting of Kendrick Smith and Dragen Huterer took a new look at the data, and concluded that there was no evidence for a cold spot in the other group's data. Basically, they analyzed the little circular regions below in the red map (galaxy counts) and blue map (flux), and determined that there was nothing unusual about them:

Nothing looks weird about them, either. What could've caused this, then?

Bad statistics. People in my field do this all the time: they don't get the answer they want from their analysis, and so they find a new way of doing the analysis. And you can repeat this ad nauseum, until you find a method that gives you the answer you want. Their favorite thing to look for is irregularities in the cosmic microwave background. And I know about this, because I spent about 6 months in 2005-6 playing with the cosmic microwave background, testing for irregularities. I must have performed about 20 different statistical tests on it, and guess what? Everything came back as you would've expected (completely Gaussian fluctuations), with no abnormalities.

So when I see a statistical test that comes back and claims to have found something, I'm immediately skeptical. The only one that I've seen that might be interesting is this one, and everyone knows we need more data (and probably data from PLANCK is needed; WMAP isn't good enough) to determine whether it's significant or not. And now you know not to believe everything you read, even from scientists, until it's been rigorously tested!

More like this

The task is not so much to see what no one yet has seen, but to think what no body yet has thought about that which everyone sees. -Arthur Schopenhauer Most of you who've been reading Starts With A Bang for a while have seen this picture come up many, many times. Why do I keep putting it up, and…
The precise measurement of the microwave background fluctuations by COBE, followed by the tour de force "concordance cosmology" results of the WMAP mission combined with decades of data on large scale structure, clusters of galaxies and distance ladder calibrations, up to and including type Ia…
"Science progresses best when observations force us to alter our preconceptions." -Vera Rubin I want you to think about the Universe. The whole thing; about everything that physically exists, both visible and invisible, about the laws of nature that they obey, and about your place in it. It's a…
"To exist in this vast universe for a speck of time is the great gift of life. Our tiny sliver of time is our gift of life. It is our only life. The universe will go on, indifferent to our brief existence, but while we are here we touch not just part of that vastness, but also the lives around us…

Ethan,

I clicked on the link in the last paragraph and read through it. I was unable to grasp what was being said and what the implications are of such a statement. Could you please elaborate on what that paper is suggesting, and possibly give an update on what they have found since the papers release.