Me in the Media: Two New Interviews

I've been slacking in my obligation to use this blog for self-promotion, but every now and then I remember, so here are two recent things where I was interviewed by other people:

-- I spoke on the phone to a reporter from Popular Mechanics who was writing a story about "radionics" and "wishing boxes," a particular variety of pseudoscience sometimes justified with references to quantum mechanics. The resulting story is now up, and quotes me:

It is hard to investigate the ethereal thinking around radionics, but physics is something that can be parsed. So I got in touch with Chad Orzel, a physics professor at Union College in New York and the author of several popular science books, including How To Teach Quantum Physics to Your Dog. This sounded about my speed, and I ran a few ideas about physics and radionics past him, particularly "quantum entanglement," which several people offered as evidence that radionics is possible.

"Entanglement is a very strange phenomenon," says Orzel. "But it's a very real thing."

[...]

"People try to invoke this as a way of justifying ESP sorts of things: 'Well, maybe electrons in your brain are entangled with electrons somewhere else.' There's a couple of problems with it," Orzel says.

You'll have to click through to see what the couple of problems are, though...

-- A little earlier, Irene Helenowski interviewed me by email. This went live last week, when I was in California, which is my excuse for not posting it until now.

Professor, how is Emmy doing these days?

She's doing well. She's getting on in years for a dog-- she's 13-- so she's slowed down a bit. But she's still pretty spry, and can about pull me off my feet when she really wants to get to something on one of our walks.

You discuss simulating a black hole at CERN. What is the current status on the scientists' progress with that project?

It's not so much simulating, as trying to _create_ a black hole. The idea is that if you can pack enough energy into two colliding protons, you can create a situation where they get close enough together, and have enough total energy that they form a tiny black hole.

This is very much a long-shot possibility at the energy of the actually existing LHC-- if nothing exotic is going on, there's no way the LHC energy is enough to make a black hole. There are some exotic theories where gravity gets dramatically stronger at short distances, though, and if one of these turned out to be true, there's a chance you could get a black hole. This would evaporate through Hawking radiation almost immediately, spraying out a burst of particles that could identify it as a black hole rather than a more typical collision.

There have been some searches for this in data from the first LHC run, and no sign of black holes has been seen. They just recently re-started at a higher energy (by a factor of two, not enough to make mini-black-holes likely), and I'm sure there will be more such searches. Nobody really expects this to pan out, but it would be tremendously exciting if it did.

Again, click through to read the rest.

------------
And while you're clicking on things, please consider taking a few minutes to respond to Paige Jarreau's survey of blog readers. It's for SCIENCE!, specifically her postdoctoral research on communicating science online.

More like this

The good news: Despite their best efforts, the folks at CERN failed to produce a black hole that sucked the entire earth into it! That would have been cool. The bad news is for string theory. What might be one of the few empirical tests for that tangle of math and stuff seems to have come out…
Who is correct here? We don't know, you don't know, it is uncharted territory. Would you bet the entire human history and the existence of our solar system on it? I wouldn't. --from a user comment on my old website on the topic of the Large Hadron Collider Back when all the hype and hoopla…
Today's guest post is by Weizmann Institute physicist, Prof. Micha Berkooz. Berkooz, a string theorist, recently organized a conference at the Institute on "Black Holes and Quantum Information Theory." We asked him about Hawking's recent proposal, reported in Nature under the headline:"There are no…
“Time travel used to be thought of as just science fiction, but Einstein's general theory of relativity allows for the possibility that we could warp space-time so much that you could go off in a rocket and return before you set out.” -Stephen Hawking As always, there's been a new fantastic week of…